Functional Coefficient Nonstationary Regression with Non– and Semi–Parametric Cointegration∗

نویسندگان

  • Jiti Gao
  • Peter C. B. Phillips
چکیده

This paper studies a general class of nonlinear varying coefficient time series models with possible nonstationarity in both the regressors and the varying coefficient components. The model accommodates a cointegrating structure and allows for endogeneity with contemporaneous correlation among the regressors, the varying coefficient drivers, and the residuals. This framework allows for a mixture of stationary and nonstationary data and is well suited to a variety of models that are commonly used in applied econometric work. Nonparametric and semiparametric estimation methods are proposed to estimate the varying coefficient functions. The analytical findings reveal some important differences, including convergence rates, that can arise in the conduct of semiparametric regression with nonstationary data. The results include some new asymptotic theory for nonlinear functionals of nonstationary and stationary time series that are of wider interest and applicability and subsume much earlier research on such systems. The finite sample properties of the proposed econometric methods are analyzed in simulations. An empirical illustration examines nonlinear dependencies in aggregate consumption function behavior in the US over the period 1960 2009. JEL Classifications: C13, C14, C23. ∗The authors thank participants at many conferences and seminars for comments on earlier versions of this work. Gao acknowledges Australian Research Council Discovery Grants Program support under Grant number: DP1096374. Phillips acknowledges support from the NSF under Grant Nos. SES-0956687 and SES-1258258. †The University of Adelaide & Monash University. ‡Yale University, University of Auckland, University of Southampton, & Singapore Management University.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‘estimating Smooth Structural Change in Cointegration

This paper studies nonlinear cointegration models in which the structural coefficients may evolve smoothly over time. These time-varying coefficient functions are well-suited to many practical applications and can be estimated conveniently by nonparametric kernel methods. It is shown that the usual asymptotic methods of kernel estimation completely break down in this setting when the functional...

متن کامل

ESTIMATING SMOOTH STRUCTURAL CHANGE IN COINTEGRATION MODELS By

This paper studies nonlinear cointegration models in which the structural coefficients may evolve smoothly over time. These time-varying coefficient functions are well-suited to many practical applications and can be estimated conveniently by nonparametric kernel methods. It is shown that the usual asymptotic methods of kernel estimation completely break down in this setting when the functional...

متن کامل

Estimating Smooth Structural Change in Cointegration Models

This paper studies nonlinear cointegration models in which the structural coefficients may evolve smoothly over time. These time-varying coefficient functions are well-suited to many practical applications and can be estimated conveniently by nonparametric kernel methods. It is shown that the usual asymptotic methods of kernel estimation completely break down in this setting when the functional...

متن کامل

Kernel-based Inference in Time-varying Coefficient Cointegrating Regression

This paper studies nonlinear cointegrating models with time-varying coefficients and multiple nonstationary regressors using classic kernel smoothing methods to estimate the coefficient functions. Extending earlier work on nonstationary kernel regression to take account of practical features of the data, we allow the regressors to be cointegrated and to embody a mixture of stochastic and determ...

متن کامل

Structural Spurious Regressions and A Hausman-Wu-type Cointegration Test∗

Economic models often imply that certain variables are cointegrated. However, tests often fail to reject the null hypothesis of no cointegration for these variables. One possible explanation of these test results is that the error is unit root nonstationary due to a nonstationary measurement error in one variable. For example, currency held by domestic economic agents for legitimate transaction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013